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Abstract

We present casay computable bounds on the extreme generalized cigenvalues of Termitian pencils

(R..,.B,.)) with finite eigenvalues, and positive definite B, matrices. The proposed bounds are

denived in terms of the generalized cigenvalues of the subpencil of maximum Jdimension (R.B,)

contained in (R,.,. B,.)).

Known resualts based on the generalization of the Gershgorin thcorem and norm inequalities are

presented and compared to the proposed bounds.

It is shown that the new bounds compare

favorably with these kncwn results; they are casier to compute, require less restrictions on the

propertics of the pencils studied, and they are in an average sense tighter than those obtained with

the norm incquality bounds,
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1.0 Introduction

The Tlermitian (regular or generalized) cigenproblem occurs in a variety of apphications in signal
processing. It is commonly encountered in array processing [1,2,3], in spectral estimation [4],
filtering [ 5], and other arcas. Different bounds for the extreme eigenvalues of the regular Termitian
problems have been presented in the literature [6.7]. Some of them have then been extended to
the gencralized Hermitian cigenproblem by cither backtransforming the gencralized problem into
the corresponding eigenproblem, or by generalizing the results originally derived for the regular
eigenproblem [R]. Classical bounds derived using norm incqualities can be cxtended to the
generalized positive definite eigenproblem by backtransforming the pencil (R.B) into a regular
problem (€ 'RC °.[) where B= C(". lHowever, such a transformation requires the Choleski
decomposition of B. The gencralization of the Gershgorin theorem proposed by Stewart [8] does
not have such a restriction, but the tightness of the bounds depends strongly on the characteristics

of the pencils under study.

Here we present new bounds for the extreme generalized eigenvalues based on an order-recursive
cigenproblem decomposition. This work can be considered as an extension of the ideas of Slepian
ct al [9] and Dembo [107 who considered the regular cigenproblem. The original idea behind the
following work is connected to the derivation of the order-recursive RTTE [117 and C-RITYF [12]

algorithms. Thesc algonthms take advantage of the interlacing property [6]:
Linn ShnS i €S i

where 4, ., is associated with the (7 + 1)* dimensional pencil (R,,,, B,.,) and 2, is associated with
the n-dimensional subpencil (R,, B,) contained in (R,,,, B,,,). This property allows us to define
intervals in which 2, ..., 4,,., may be found via iterative scarch techniques [12.13]. However,
the interlacing property doces not provide an upper bound on the largest generalized cigenvalue or

a lower bound on the smallest generalized cigenvalue.  The proposed bounds on the extreme

Introduction 2




cigenvalues take advantage of the information available at the previous order (assumed to be

known), and arc casy to compute.

Introduction 3




2.0 Derivation of the new bounds

Tet (R,.,.B,.) be a (n+ 1)-dimensional Hermitian penctl with finite eigenvalues, Tet us assume
that the generalized cigenvalues of (R, B)) arc known. The cigenvalues 7 associated with the penail

satisfy the relation:

det(R,,, -~ 4By, ) =0 (1)

which can be expressed as:
by b
1 1 0 0 14 ‘ =0 (2
¢ ([ re b R,— B, !

Therefore, using [6] the determinant of the extended penett (R, B ) may be expressed ase

DET = det[ (R, = IB)(ry — iby — (s = 3 (A — 31 (s = 2q))]
=det[R, — B Jdet]ry — iy = (s = i) (A, = AN (s~ Ag)]
with s = {7r and g= Uh, where () = {1, ... .15,] 15 the B-orthonormalized cigenvector mialrix
associated with (R, B). The cigenvalue scarch function A(4) is defined as:
oy DEL )
) det[R, — i8] “
Fxpanding (4) leads to:
n B [?
Al i
L (5)
Pt Apn— 4
with ff, = (s, — 4q,). where o, = wjr and ¢, = w;h. The zeros of (5) are the generalized cigenvalucs
of the increased order peneil (R,  B,.). The function A(4) s monotone decreasing between its
poles, as shown in Appendix A, Note that similarly to the regular cigenproblem [9.14], A(2) fails
to have (n+ 1) real roots only when it has less than n distinet poles. This happens when

(R..,. B ) has multiple cigenvalues, or when s, = ¢, — 0 for some &, Slepian et al [6] indicated that

Derivation of the new bounds 4




three possible sitnations related to the multiple cigenvalue case can ocenr for the regnla
cigenproblem. These comments can be extended 1o the generalized problem. Tet 4 be an
cigenvalue of (R, B with multiphcity bl 9) = (00 forp—moom b and 418 not a root
of Ay, then 2. s an agenvalue of multiplicty & for the (n+4 1) dimensional penal. If
(s, g = (0 forp—m oom 4 hoand /4 isaroot of A4y then 7 isan eigenvalue of multiplicity
A+ 1 for the (n+ D* dimensional penetl Finally. i (5.¢) # (0.0 for some p where

m< p<om+ kothen 41 an cigenvalue of multiphaty & — 1 for (R, B, )

The idea now s 1o find a lower bound on 4, and a higher bound on | by approxamating

the rational portion of the cigenvalue scarch function. To that end we note that

I

, A n | |
oo . A R
. ‘-— < ("v\m()) - \ - - N (6
— ’ Y Ay /
k=1 : f=1 :
and
n Iy |2 n v oo
A ¥ . AN B
N BN (6
la =) VR I
k=i o p=y e
Thus from (6 we got
. A . o , -
Ay > D 0 =y = dhy Gl for G enl Ay ) (Ta)
. Y . . . . . -
hii) = hmnx(/) = "/)lr - (’ma\“) for (4n o) (7h

As shown in Appendix A, the function A (/) 15 monotone decreasing in ( — o, 4,0, and A (4]

min

is monotone decreasing in (4., c~). Thus, A (4) has a root 7 in the interval (= o, 7, ) such

that 4 </, ... as illustrated m Figure 1. Similarly, A__(2) has a root 7 in the interval

{7,,.on)suchthat 4, >4 ., | Theroots ), and i

nyo max

can easily be computed by solving for the

roots of the sccond order polynomials:

h(3)=(ry = ibhg)n — ) — I s~ ,‘,ql2
(K)

A

P (my ~ gl 2) 4 2(2real(s ) = ry - mgn) 4 rgy — 512 =0

Denvation of the new bounds 5




forn— 4, 0ty 4.,

Note that for the regular cigenproblem, where B - [ (8) becomes:

b N

P A0y omp) b e = {9

which is the <ame expression as the one obtmned by Slepuan et al [9] and by Dembo [ 1]

Denvation of the new bounds 6




3.0 Comparisons with known bounds

This section first reviews two types of known hounds on the extreme generahized eienvalues of
pencils, and next presents some compartsens of the proposed bounds with classical resuits based

on norm mequalities.

The generalized Gershgorin theorem

Stewart [S] derived a generalization of the Gershgorin theorern and showed that the gencralized

cigenvalues of Ry = 2Ry lie in the union of the neighborhoods ¢, defined as

where

- *
A “’“({ - /)[;7' ll
IO - '5,*%,” L = ’(,,l,%,,i?‘ (rm
e by NUPR R
with
ool et o B b by B
v m:n{(l, e, b Bty " ih

P a0 T - g

y(7.7") is the chordal distance between 7 and 770 It is defined as the length of the chord jomning the

points ¢ and A located on the Riemann sphere [15,16], as shown in Figure 2.

Comparisons with known bounds




Several comments can be made here:

1. A tighter bound may be obtained by replacing in p, norm | with norm 2, as shown in

Appendix B,

2. A finite value for p, is obtained only when (. ',) = (0,0), or when (r,, h,) = (0,(). Note that
(Y. b)) # (0,0), requires that at least one of the matrices of the pencil (R,5) to be diagonally
dominant' . Thus, p, may be infinitc when at least one of the matrices of the pencil studied
(R.B) is not diagonally dominant and no restrictions on the diagonal clements of the pencil are

made. This indicates that the bounds obtained via the Generahized Gershgorin (G.G.) thcorem

are not insurcd to be finite in all situations where the pencil has finite cigenvalucs.

3. The chordal distance x(2, 2’) has a maximum value of 1 [16]. Thus, a finite Gershgorin
neighborhood is obtained only when p, < 1. The value of the parameter p, defined in (10)
depends on the pencil (R.B), it can have values larger than | even when the peneil cigenvalues
are finite. In such a case, the regions (;', containing the eigenvalues cover the whole space, and

no new information is gained by applying the G.G. theorem.

The above comments indicate that, when dealing with pencils with finite cigenvalues, additional
information can be gained from the G. G. only when p, < | for all i. This further restricts the
uscfulness of the G.G. thecorem. By comparison, the proposed bounds are limited only to
Hermitian pencils (R,B) with positive definite B matrices. Furthermore, the bounds are insured to
be finite when the origing! peneil has finite cigenvalues to start with. Therefore, the (G.G. bounds
will not be used in the following statistical comparisons because they require too many restrictions

on the pencils studied in order to bring additional information.

Norm Inequality bounds

Bounds on the extreme cigenvalues of the rcgular cigenproblem Ax = Ax based on norm

inequabitics have been proposed [6,7]. Recall that for such bounds, we have:

' The matrix R is diagonally dominantif |r,| >3 |r, | for all i.
17
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Apstngr < Al
Apginer < 1L
1

A >
VS St A

L,

The above incqualities can be extended to the generalized eigenproblem by backtransforming the
pencil (R ™ into (C 'RC "Iy when B = C(7 is positive definite. It was not possible to perform an
analytical comparison of the new bounds with the norm incquality bounds. As a result, the

behavior of the bounds was studicd statistically using simulations.

The errors between computed bounds and the true cigenvalue are defined as:

’J‘I.n+l ")'min ) ’J‘I.n+l _}‘normmf
rmin,,, = I | Orin,,, = | |
A1t ’J'I,nH
Y max ')n+l,n+l ’]'nnrm, - )‘n+l,n+l N
My, = ¥ | CMay, = 1 | (11
Zn+l el N+l
/'nnrm, - 'J'n+l N+
err_... =
n-a\,
| 'J'n+l R e l
where 4 . and 7 are the eigenvalue bounds proposed using the order-recursive technique.
min max p g

?permp and . are the upper bounds respectively obtained using norm Fand norm 1, as defined

in ‘12). 4.,.  isthe lower bound obtained using nerm infinity, as defined in (12).

We considered pencils in which the elements are randomly generated from a uniform distribution.
Nofe that bounds derived using matrix norm incqualities are only valid with positive definite
pencils. Thus, in order to compare the proposed bounds with the matrix norm incqualities bounds,
the cigenvalues of (R,B) are shifted to insure that the pencils under study are positive definite. Table
1 presents the means and standard deviations obtained for the error measures defined in (13). 3000
randomly generated positive definite pencils were used to gencrate the results in each case. This
table shows that the proposed bounds are tighter than the norm incquality bounds in an average
sense only, i.c., the relative tightness of the bounds around the true eigenvalue depends upon the
pencil under consideration much more than the norm incquality based norms.  Furthermore, the

results indicate that the larger the cigenvalues are, the better the performance of the proposed 2,

Comparisons with known bounds 9




is. Note that 7 is not bounded by 0, as is ),,“,",m/. and can be negative. Fherefore, the likelihood

of 2., < 0increases when the true cigenvalues are close to 0 to start with.

Table 1. Bound error measures

average min & | errin I M in T €M ax l 1 rman, I CFl ax
max eigenv. mean (standard deviation)

28.677 0.5381 0.7089 0.2813 0.3282 0.5016
3079 (2.1267) (0.0225) (0.4057) (0.1194) (0.3109)
219 0.5730 0.7913 (.4356 0.5005 0.5730
10978 (1.4311) (0.0156) (0.6020) (0.1383) (0.3724)
8407 0.1631 0.7884 0.4356 0.4771 ().6485
3.610¢ (0.0771) (0.0166) (0.6450) (0.1486) (0.4410)

Comparisons with known bounds 10
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Figure 1. Eigenvalue search function h(1), and bound search functions h (4),and h_ (4)

Comparisons with known bounds

11




x(4, ") = d(a,b)

Figure 2. Definition of the Chordal distance:

from Parlett [15]
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4.0 Conclusions

This report presents new bounds on the extreme eigenvalues of Hermitian pencils (R,B) with finite
eigenvalucs, when B is positive definite.  'The bounds arc based on an order-recursive
eigendecomposition of the pencil.  Simulations indicate that the proposed bounds depend more
strongly on the pencil considered than those dertved using norm incqualitics.  However, they are

not as restricted and are easy to compute.
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Appendix A. Monotone behavior of the eigenvalue

search function, and the bound search functions

This appendix shows that the generalized cigenvalue search function A(2), and the bound scarch

functions A,,,.(4), and A, ,.(4) arc monotone decreasing between their poles.
Proof:

Recall froia (5) that the eigenvalue search function is defined as:

N ls, — Aq, )
- N PTGk
W= o= = 2,

Consider the following matrix equation:

ey AR
s—iq A=A x 0

with A = diag(/, .. ... . ). Solving equation (A.2} for ( leads to:
Cy=[ry— by~ (s = 29) (A= (s = 2]
= (]!
C(A) may be rewritten as:
Ch) = e} (R = 2B) e,

with

Appendix A. Monotone behavior of the cigenvalue scarch function, and the bound scarch
functions

(A.D)

(A.2)

(A.3)

(A4)
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so that from (A 4) we get:

Cy=e(R—1R) " B(R=2B) e, >0 (AS)
Using (A.3) and (A.5), A'(4) becomes:
d 1 —C'{4)
WAy =—- - = < (A6
e el s )

Therefare 2(2) is manotene decreasing between its poles.

Next, note that A, (2) and A, (4) arc functions similar to A(4) in which A has been respectively

replaced with diag(4,,...,4,,) and diag(2,,...,2,,). Thus, A, (1) and h,, (1) arc monotone

decreasing between their respective multiple poles 2, and 7.

Appendix A. Monotonce behavior of the eigenvalue search function, and the bound scarh

functions




Appendix B. Generalized Gershgorin bounds

This appendix first reviews the generalized Gershgorin neighborhoods proposed carlier by Stewart
[8]. Next, it shows that further tightness of the eigenvalue bounds may be obtained by replacing

the norm 1 measure used by Stewart with the norm 2 measure.

Generalized eigenvalues and the Chordal distance

Some insight into the propertics of the peneil (R,B) can be gained by looking at the Generalized

Schur (G.S)) decomposition [ 7]. Recall that the (5.8, decomposition leads to the following result:

Theorem: If R and B are in €7, then there exists unitary @ and 7 such that Q°A/ = T and

Q' B7 = S arc upper triangular. If for some k&, 1,, and s,, are both zero, then A(R.B) = C. Otherwise,

A(R.B) = {Iii/“ii sy # O} .

Equation (B.1) shows that A(R,B) may be very sensitive to small changes if «, is small. However,
Stewart [ 7] noted that the reciprocal s, /¢, may be a well behaved (i.c., not sensitive 1o small changes
of its parameters) eigenvalue of the pencil (8,R), and pointed out that. it may be better to treat the
eigenvalues as pairs (Z,,5,) than as quoticnts.  As a consequence, Stewart [R] identified the

eigenvalues 7 = t/s of pencils with the point in the projective complex line defined as:
[t.s] = {(t,8) # (0,0) : tfs = 2}
The Chordal metric? y is used to measure the cigenvalue separation. It is expressed as:

Ist! — ']

NI ENIEITIE

2] I8, 0D & (B.2)

2 This melric results from the introduction of the extended complex plane (complex plane + infinity) in
complex analysis [16]. The Riemann sphere is chosen to represent the extended complex plane which is
not easy to visualize directly. ‘The correspondence between the two geometric represeriations is then set
up with the aid of a stereographic projection [16].

Appendix B. Generalized Gershgorin bounds 17




For A = s/t and 2’ = ¢'{t’ the chordal distance can be expressed as:

- 21
J1+22 1427

x4, A7) = (B.3)

‘The distance (4, 4') is the length of the chord joining a and b, as shown in igure 2.

Some uscful properties of the Chordal metric [16]

1. The chordal metric is invariant under reciprocation; i.c., x(4, A') = x(1/4, 1/2") .
2. The chordal metric is bounded; 1.e., 0 < x(2, 2) < 1.
3o x(An A < (A A) + 2250 4y).

4. y(i. i) =yx(2' ).

Generalized Gershgorin bounds

Stewart [R. th. 2.1] showed that the gencralized cigenvalues 4 of the pencil (R.8) lie in the union

of the regions G, defined by:

Gr={[ri+m X b+ BiX]: IR, <1} (i=1...n) (13.4)

4

where ol = (r o or, (L E) Bl= By By By B), and xois formed from the

cigenvalue x by deleting its i component.

The sets G, are not casy to work with. Thus, they are replaced with the following neighborhoods

defined in terms of the chordal metric y. This leads to:

* * ~
|ryB; — by x |

x(Cri bud {71 + o X, by + i X]) = — o (B.5)
7+ oy x 1%+ 1By + fi x|
Next, the scts (:‘ arc dcfined as follows:
Gy= {2 x(rylby. 2) < pil (B.6)

Appendix B. Generalized Gershgorin bounds IR




where p, is an upper bound on the chordal distance defined in (B.S). These regions (, contain the
eigenvalues of the pencil (R.A); they are called the Gershgorin regions. Stewart [R] showed that the

bound p, introduced in (B.6) can be defined by:

Y S N
- S /e 1T (B.7)

! 2 /42 02
\ "‘ii’ ‘+‘ Ihﬁ|2 \,'Ifji,- + ,) i

where
Pi=max{0. gl = faf}

l’"n - ﬂ]:“{“' “’u‘ o ”/"fi"](

Modified Gershgorin hounds

A bound ;. on the chordal distance tighter than the one proposed by Stewart with (B.7) cin be

denived by using the following vector norm inequality:

lbelly = ity (B R
Using (B.8) n (B.S) leads to:

N O N I o S A TN (B.9)
and

L4 mxi 2t = Tagx ) (B.10)
Note that

Il = X1 Tl = g Il (B11)
Thus, (B.®), (B.9), (B.10). and (B.11) lcad to:

v T ..
y(rafhy. 1) < 5 2 Vil = bl — <p; (B.12)

/ 7 [ 7
\.’/]rl'ilz + Ihul \/ |7Jii|2 '+ Ib'ulz

Appendix B Generalized Gershgorin bounds 19




where

Y= nm({‘), lr, ! - [Iyli_\]‘v

by m:xx{(L th,i - ||ﬂ{3fg}

Note that the GG bound s nghter than o bt similar comments to those made on g, apply

Appendix B Generalized Gershgorin bounds
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